欧美精品久久久久久久影视,拒绝平凡,让每一次打开都充满新鲜与期待

k1体育麻将胡了

欧美精品久久久久久久影视 最近更新|更新列表|字母检索|下载排行|苹果专区|分类导航
小婷性开放肉日记高Hnp百度云 中国·小樱 日韩精品一级毛片免费视频 情爱视频免费观看网站 迷奸在线播放

目今位置:首页电脑软件路过我年少时光的蓝色 → 欧美精品久久久久久久影视 v4.42.5770.725392 安卓最新版

欧美精品久久久久久久影视

欧美精品久久久久久久影视

  • 电脑版下载
猜你喜欢
标签: 欧美精品久久久久久久影视 人人看人人干人人看
详情
先容
猜你喜欢
相关版本

内容详情

欧美精品久久久久久久影视

MiniMax海螺视频团队不藏了!

首次开源就揭晓了一个困扰行业已久的问题的谜底——

为什么往第一阶段的视觉分词器里砸再多算力,也无法提升第二阶段的天生效果?

翻译成明确话就是,虽然图像/视频天生模子的参数越做越大、算力越堆越猛,但用户现实体验下来总有一种玄妙的感受——这些重大的投入与产出似乎不可正比,模子离完全真正可用总是差一段距离 。

So why?问题,或许率就出在视觉分词器(Tokenizer)这个工具身上了 。

当算力不再是谜底时,真正需要被重新审阅的,着实是天生模子的“起点” 。

在目今主流的两阶段天生框架中(分词器+天生模子),业界已经在视觉分词器的预训练上投入了大宗算力与数据,但一个尴尬的事实是:

这些本钱,险些没有线性地转化为天生质量的提升

而MiniMax海螺视频团队,不止挑战了这一现实——用实验证实“Tokenizer的scaling能够提升模子性能” 。

更要害的是,还带来了一款开箱即用、专为“下一代天生模子”打造的可扩展视觉分词器预训练框架——Visual Tokenizer Pre-training(以下简称VTP) 。

只需换上这个视觉分词器,即可在不改变下游主模子(如DiT)任何训练设置的情形下,实现端到端天生性能的倍数级提升 。

下面详细来看——

古板Tokenizer的缺陷:更好的重修≠更好的天生

要明确VTP保存的意义,首先我们需要回到更基础的问题上——

Tokenizer是什么?它又为何云云要害?

以AI生图为例,目今主流的生图模子险些清一色接纳了“两阶段”天生框架:

第一阶段(压缩):使用视觉Tokenizer(如VAE)这个组件,将原始图像压缩并映射到一个潜在空间(latent space)中 ;第二阶段(还原天生):再由以扩散模子为焦点的天生器(如DiT),在这个潜在空间中学习漫衍,并逐步还原、天生最终图像 。

用一张图来形容这个历程be like(先压缩后还原):

而Tokenizer,就是在第一阶段中认真压缩图片信息的组件 。

若是没有这个组件,扩散模子就得直接在数百万像素组成的原始像素空间中举行“去噪”和天生——其盘算重漂后和内存开销将是天文数字 。

因此,Tokenizer称得上是让模子能够在消耗级显卡上运行起来的“要害元勋” 。

除此之外,Tokenize历程所得的低维潜在表征,其质量直接决议了最终天生图像的语义保真度、细节富厚度以及整体真实性,以是业界也普遍以为——

从某种水平上来说,Tokenize险些决议了后续天生模子的上限 。

基于此,人们在研究怎样提升下游天生模子的质量时,也不约而同地将重点放在了“怎样精准复刻原始像素”上,即要求模子将压缩后的潜在特征(latent)尽可能精准地还原为原始图像 。

而问题,也正出在这里 。

古板Tokenizer在追求“像素级重修”时,往往会太过着迷于捕获图像的局部纹理、噪点等低层信息,从而忽视了天生使命真正依赖的高层语义与整体结构 。

这就像学渣为了应付考试,只想着死记硬背种种试题,却完全不明确问题背后的知识点与逻辑结构 。效果真正到了需要闻一知十、解决新问题的时间,一下就傻眼了 。

在论文中,海螺视频团队将这一征象界说为“预逊放问题”(Pre-training Scaling Problem):

更好的像素级重修精度并不可带来更高质量的天生效果

如图所示,古板仅基于“重修”目的训练的Tokenizer(灰线),随着算力投入增添,模子的天生性能不但没有提升,反而逐渐趋于饱和甚至略微下降 。(ps:gFID权衡天生质量,越小越好)

由此,论文得出第一个要害发明:重修做得越好,天生反而可能越差 ;谎灾,古板VAE所依赖的纯重修训练范式,在面向天生使命时保存根天性局限 。

那么,VTP是怎样破局的呢?

VTP破局之道:从像素级重修到强调“明确力”的主要性

事实上,VTP并非横空出生,而是海螺视频团队在恒久实践中重复试错与认知迭代的产品 。

一些早期探索:从易学性到通用表征学习

在早期事情VA-VAE中,团队注重到:

有些“压缩后的特征”能让后续的扩散模子学得又快又好,而另一些则不可 。

基于此,他们提出了“易学性”这一看法——即差别的潜在表征(latents)关于下游天生模子的学习难度截然差别,并期望通过优化latent的某些“友好特征”(如匀称性、频域漫衍等)来间接改善天生效果 。

然而实践发明,这些要领虽有一定效果,却未触及实质 。按团队自己的话来说就是:

实验将易学性等价为可准确盘算的简单指标(例如频域漫衍、匀称性、scale稳固性、低秩效应等等)有些过于理想了,这些指标可能和易学性有一定关联,但远不是所有 。

就是说,当优化目的被限制在少数可丈量指标上时,模子往往只是学会了在特定指标上“刷分”,而没有从基础上学会明确图像的结构与语义(实质上仍未脱离“重修”领域) 。

△在VA-VAE中,团队曾实验将易学性对应到latent漫衍的“匀称性”

而经由一连反思,团队逐渐意识到VA-VAE和厥后的许多实验,其深层目的并非仅仅是优化几个指标,而是在试图让latents具备某些更高级的“结构” 。其背后逻辑在于:

若是某种latents关于图像中的实体、位置关系具有高度结构化的表达,那么这种结构化表达关于下游diffusion建模来说也会更精练、更容易,这些方面的天生效果也自然会更好 。

这就好比另一种层面上的“大道至简”——当模子真正掌握了物体、关系与语义这些视觉天下的实质纪律时,它能应对的使命自然也就越多了(以稳固应万变) 。

因此,与其为“易学性”设计懦弱的署理指标,不如直接让Tokenizer去学习人类视觉系统自己所依赖的那种高度结构化、语义化的通用表征 。

事实像CLIP、DINOv2这样的现代通用表征学习要领,正是在大规模数据上自动化地学习了这种“人类对齐”的视觉表达,才在多种下游使命中体现出强盛的泛化能力 。

至此,团队的研究重心正式从“像素级重修”转向了强调理解力的“通用表征学习” 。

VTP:回归“压缩即智能”实质

基于这一认知转变,VTP的设计原则变得异常清晰 。团队体现:

我们应该融合所有已知有用的表征学习要领来构建一个Tokenizer

详细而言,VTP这次率先实现了从只练“重修”到“明确、重修、天生”的联合优化 。

一是通过图文比照学习,建设高层语义明确 。

在训练时,团队会给模子看大宗图像-文本配对数据(如“一只猫在沙发上”与对应图片),然后要求图片的特征向量和文字的特征向量尽可能靠近 。

这和之前的CLIP思绪一脉相承,但目的更聚焦 。CLIP追求的是广义的图文匹配能力,而VTP则要求Tokenizer在压缩图像为紧凑的潜在编码时,必需保存与文本对齐的语义结构 。

这意味着,天生模子后续吸收到的每一个潜在体现,自己就已经是“有语义的”——它不但是一堆像素的压缩,而是携带了“猫”、“沙发”等看法及其关系的结构化表达 。和以往相比,“语义注入”被提前到了压缩阶段 。

二是通过自监视学习,掌握空间结构与视觉知识 。

在VTP框架中,自监视学习?橥ü笛诼胪枷窠#∕IM) 和自蒸馏(DINO气概),“迫使”模子去明确图片的空间关系和物体结构 。

这个历程会“逼着”Tokenizer往返覆差别问题:

通过自蒸馏回覆:抛开详细的像素细节,这张图片最焦点的视觉主题或看法是什么?(全局语义)通过MIM回覆:凭证你看到的“冰山一角”,你能推断出整个“冰山”的形状和结构吗?(结构推理)二者协同回覆:为了识别图片主题或从局部重修整体,哪些视觉线索是决议性、不可缺失的?(聚焦焦点)

这一套流程走下来,模子对图像的明确便不再停留在像素层面,而是构建起了却构化的视觉认知 。

三是通过重修,保存须要的底层视觉细节 。

VTP依然保存了重修目的,但它的定位爆发了转变——其作用不再是“越准越好”,而是确保潜在空间中仍然保有天生所需的纹理、颜色与边沿等细节信息 。

这三重目的并非伶仃举行,而是通过一个统一的多使命损失函数举行联合优化:

最终,VTP获得的不是一个在某个指标上“特殊优异”的压缩器,而是一个自带明确能力、对天生模子很是友好的视觉Tokenizer 。

这里也增补一个细节:为什么他们不像许多事情一样直接使用现有的CLIP或DINOv2作为Tokenizer,而非要投入重大算力重新预训练一个?

其焦点思索在于两点(团队原话如下):

表征真的很主要,我们想要做到很极致 。在我们的视角下表征包括了自监视、比照学习、甚至是重修(这些只是已知较量成熟的要领,现实上理想的表征远不止这些),市面上没有一个能够很好地融汇这些要领的模子,我们需要自己训练一个 ;诒碚鞯腡okenizer计划具备scaling的潜力,预训练是最合理的实现方法 。若是直接使用已有模子蒸馏或者迁徙,会由于setting过于重大而破损scaling的性子,也会受限于已有的模子规格而无法做充分的论证 。

以是,选择“重新最先”的VTP,着实际体现事实怎样呢?

首次展示了Tokenizer的Scaling Law

归纳综合而言,团队通过VTP得出了两大概害发明:

明确力是驱动天生的要害因素视觉Tokenizer也具备明确的Scaling Law

先说第一点 。

VTP用实验证实,若是只做重修的话,投入资源越多天生反而可能越差 。

下图中,代表重修能力的rFID从2.0降至0.5,重修效果变好 ;但代表天生能力的gFID从55.04升至58.56,天生效果变差 。

而一旦注入“明确力”(即引入CLIP图文比照/SSL自监视使命),模子的天生质量(gFID)会随着明确能力(Linear Probe)的提升而同步变好——

二者泛起显着的正相关,且这种提升会随着训练盘算量增添一连推进 。相比之下,缺少“明确力”的古板AE Only计划,其天生质量和明确能力很快陷入障碍 。

更进一步,团队在一律算力下比照了差别组合,证实“CLIP+SSL+AE”的联合训练方法上限最高,天生与明确指标均最优 。

基于此,团队训练的VTP在明确、重修、天生方面均交出了不错的答卷——

在ImageNet上的零样天职类准确率抵达78.2%,凌驾了原版CLIP的75.5%,已经具备强通用视觉明确能力 ;在重修能力上凌驾了Stable Diffusion的VAE, rFID低至0.36 ;在天生能力上凌驾了此前的刷新要领VA-VAE,gFID低至2.81 。

更要害的是,在抵达相同天生质量的条件下,VTP的训练收敛速率比LDM快5.7倍、比VA-VAE快4.1倍,大幅降低了训练本钱 。

这一系列体现配合印证了团队的判断:Tokenizer的“语义明确力”而非纯粹的像素重修精度,才是驱动天生性能与效率提升的焦点动力 。

再说第二点,也是更具突破性的一点 。

团队在实验中发明,VTP首次展示了Tokenizer的Scaling Law,即天生性能可以随预训练中投入的盘算量、参数目和数据规模有用增添 。

仅从算力维度比照,在不改动下游DiT标准训练设置的条件下,纯粹将Tokenizer的预训练盘算量放大,VTP就能为最终天生效果带来65.8%的性能提升,且提升曲线仍未触顶 。

反观古板自编码器(AE),其性能在仅投入约1/10盘算量时便已饱和,且继续增添算力不但收益微乎其微,甚至可能导致天生质量倒退 。

以上发明批注,接下来除了在主模子上投入更多参数/算力/数据之外,还可以通过Tokenizer的scaling来提升整个天生系统的性能 。

这个结论,乍一看可能会让人有点转不过弯:什么时间,Tokenizer也最先谈scaling了?

在大模子语境里,“Scaling Law”险些自然只属于主模子——参数更大、数据更多、算力更猛,性能就该继续往上走 。至于Tokenizer,则恒久被视作一个“前置?椤,主打一个够用就行,做完重修使命就退场 。

但VTP的泛起却改变了这一现实,团队体现:

VTP在latents易学性和通用表征学习之间建设起了明确关联,从而第一次将Tokenizer作为scaling的主角,展现出周全的scaling曲线和扩展偏向

就是说,若是Tokenizer只是被用来精准复刻像素,那么无论怎么堆算力,提升都将很快见顶 ;而一旦Tokenizer学到的是具备语义结构、对下游更友好的通用表征,事情就完全纷歧样了 。

好比对整个行业来说,由于VTP在Tokenizer层面就已经统一了语义对齐、结构认知和细节表达,因此其产出的视觉表征自然具备多使命协同的潜力 。

这有点像先把天下翻译成了一种统一、结构化的“视觉语言” 。

一旦这套语言确定下来,下游无论是明确使命(如分类、检测),照旧天生使命(如图像合成、编辑),都不再需要各自“重新学怎么形貌这个天下”,而只是站在统一套底层表达之上,做差别的事情 。

从这个角度看,VTP自然适适用来构建“明确-天生统一模子” 。正如团队所言:

Tokenizer层面的统一,是更实质的统一

也因此,此次VTP的开源就不但单只是提供了一个组件那么简朴了 。

其更大的价值或许在于,它为整个行业提供了一条新的、且被实验证执行之有用的路径——

在主模子之外,Tokenizer同样是一个值得恒久投入、且具备明确scaling回报的焦点环节 。

现在,VTP的论文和模子权重已经果真,下手能力强的朋侪也可以实验体验下:

换一个视觉Tokenizer,模子性能就能变得纷歧样的feeling(手动狗头) 。

【传送门】代码:https://github.com/MiniMax-AI/VTP论文:https://arxiv.org/abs/2512.13687v1模子:https://huggingface.co/collections/MiniMaxAI/vtp

相关版本

    多平台下载

    • PC版

      欧美精品久久久久久久影视 v3.912 IOS版

    • Android版

      欧美精品久久久久久久影视 v2.28.6462.538635 PC版

    审查所有0条谈论>网友谈论

    揭晓谈论

    (您的谈论需要经由审核才华显示) 网友粉丝QQ群号:766969941

    审查所有0条谈论>>

    相关软件
    国产三级在线免费视频 成年午夜福利 久草视频在线国产 亚洲综合第三页 少妇婬荡免费视频在线播放 欧美一区一区二区无码人妻 狼友视频www www日本视频 星野裸体被 黄漫 wwBBBBcOm x国产福利影院 日韩色色色色色网 人C交乙o0Z0╳╳全过 人人摸人人躁 绝区零黄漫 91精品国产91久久久久蜜臀 日本国产中文字幕 亚州男人天堂 大 美女100%棵视频动漫 国产 欧美 日韩黄色视频 免费国产精品久久 老师一级婬片A片AAA 初次圆房落红视频大全 一个人看的视频免费高清在线观看梦见在海边捡万 在线理伦片在线理伦片在线理伦片在线 女儿鼓蓬蓬的牦户父亲叫什么名字 亚洲国产精品激情在线观看 美女视频网站在线观看 女生自慰摸拟器(曰本) 看A片久久免费网站 又粗又硬又猛又黄的免费视频 缅甸家庭乱伦图片成视频 国产精品嫖妓 A级A片二区欧美 男把 青草视频在线观看免费视频公开 爽 好 快 好紧含羞草 沦为男生玩物的班花 特黄大片视频一二区 男人猛躁女人秘 免费看 欧美手机永久免费看片 馃憴馃崋 91网站视频进入在线观看 三级黄色网站免费看 精品国产污污免费网站入口15 39馃棟FhZHVmp4WIA拢 https://m.tb.cn/h.6wlh44R CA381##X-alyospj8BCdwAq# 影音先锋在线观看中文字幕2019 亚洲P1AL在线视频 日韩欧美午夜性爱福利 特级毛片一级视频免费 早泄的表现 99爱精品在线视频 熟妇淫女性爱 玖玖精品免费视频 快舔别吸视频 91后进极品翘臀美女在线 亚洲日韩欧美黄片在线 亚洲欧美日韩国产综合V 黄色视频在线播放网站 欧美男人添女人逼逼视频 人成在线免费视频 99久久这里只有精品23 又爽又粗又大一级A片 和平精英女性内衣和蕾丝泳装 午夜黄色欧美性爱精品免费 国产精品 黄 鲁啊鲁啊鲁在线视频免费观看 国产精品久九 国产熟女AAAAAA片 精品国产三级A∨在线看r 91二次元动漫 丁香婷黄色 国产精品无码专区 欧美性爱交配 外国黄色网址免费 999久久久免费视频 前列腺炎的危害有哪些 黄色性巴克 美国午夜免费三节黄色片 美女打开双腿扒开屁股眼让男生桶 国产特黄AV在线播放 久久免费黃片视频 亚洲国产精品久久久久 大狙打大雷91视频 在线日韩一区看片 黄色视屏在线免费观看无码 男生女生18禁 湿一湿在线 玖玖国产午夜福利 国内妇人成熟A片免费看 国产熟妇毛多❌❌❌6 美女被插色哟哟 饼干姐姐视频在线观看app下载 孕育的摇篮2.0汉化安卓版下载 美女又黄又爽 胖女人1-45集免费播放电视剧在线观看 一级黄片69欧美 亚洲乱伦视频一区二区 亚洲18色 国产又大又黄又粗又爽免费视频 国产精品无码无卡免费 大尻 海盗2斯塔涅复仇2在线 国产a啪啪免费视频 成 人 在 线 黄 片下载 Ie炒菜网站 一级欧美 日本 中文字幕在线 人人操人人干人干人人操人人 狠狠综合久久综合中文88 jk爆乳自慰喷水 免费A片永久视频在线 都市激情综合一区、 老师❌开腿让我爽一夜官方版 囯产AⅤ无码精品一品二区三区 国产精品观看在线亚洲人成网 尤物视频免费看 欧美三级片免费久久 日韩综合网站 荷兰鲜嫩BBBwBBBw
    热门网络工具
    网站地图